Application of Smooth Particle Hydrodynamics to selected Aspects of Planet Formation
نویسندگان
چکیده
In this work, the application of the Lagrangian particle method Smooth Particle Hydrodynamics (SPH) to problems in both terrestrial and gas giant planet formation is presented. One of the major problems of terrestrial planet formation is the growth from metre-sized protoplanetesimals to larger planetesimals which interact mainly gravitationally. In order to simulate collisions between planetesimals, the SPH method can be extended to the simulation of elasto-plastic materials. By additionally using a statistical damage model, the method can be applied to the simulation of brittle materials such as basaltic rocks. The required equations are implemented in an existing parallel SPH code and tested either by numerical tests or validated against experimental measurements: The code is used to model the collision of two dimensional perfect elastic and plastic cylinders. The implementation of the damage model is tested using the simulation of a two dimensional tensile rod. The results are compared to the theoretical values given by the Grady-Kipp damage model. The validation of the damage model is performed with the comparison to an impact experiment. In order to simulate collisions between planetesimals, the model is changed slightly. The planetesimals in the early solar nebula presumably had a highly porous structure. Porous materials, however, behave differently in collisions. Before damage occurs they have to be compacted first. A possible implementation of a porosity parametrization and model is presented and applied to the collision of two porous agglomerates in three dimensions. The results indicate that in the case of planetesimals which are porous dust agglomerates, the bottle neck in the growth from metre-sized objects to planetesimals can be avoided. Another major problem in the contemporary theory on planet formation is the interaction of an accretion disc with an embedded gas giant and the resulting migration of the planet in the disc. The interaction of a protoplanetary accretion disc with one or two embedded protoplanets is investigated using the SPH method. The viscous accretion disc is modelled by the implementation of the Navier-Stokes equation in SPH. A new artificial bulk viscosity approach is implemented that prevents mutual particle penetration and allows for the correct simulation of the viscous processes in the disc. In this way, spurious artificial shear from the standard artificial viscosity ansatz is avoided. The migration of protoplanets are simulated in regard to the formation of resonant planetary systems. Additionally, I have participated in the EU planet network code comparison project. The results from my simulations are presented and differences to the results obtained with finite difference codes are discussed. Zusammenfassung Die vorliegende Arbeit beschäftigt sich ausführlich mit der Anwendung der Lagrange’schen Teilchenmethode Smooth Particle Hydrodynamics (SPH) auf zwei Probleme der Theorie der Planetenentstehung. Das Wachstum von Meter zu Kilometer großen Planetesimalen, die nur noch gravitativ miteinander wechselwirken, ist in der heutigen Theorie der Entstehung terrestrischer Planeten und der Kerne der Gasgiganten nicht völlig verstanden. In numerischen Simulationen wurde gezeigt, daß Kollisionen zwischen Meter großen felsigen Materialen bei Kollisionsgeschwindigkeiten, die im solaren Nebel erwartet werden, zur vollständigen Zerstörung und Fragmentierung führen. Um solche Kollisionen zu simulieren wird die SPH Methode erweitert und die Gleichungen der Kontinuumsmechanik für die Beschreibung von elastischen und plastischen Materialen implementiert. Des weiteren wird ein statistisches Schadensmodell zur Simulation von brüchigen Materialen wie Basalt beschrieben und getestet. Um die Änderungen im Programm ParaSPH zu testen und zu validieren, werden folgende Simulationen durchgeführt und ausgewertet: Die Kollision sowohl zweier perfekt elastischen, als auch plastischer zweidimensionaler Gummizylinder. Das Schadensmodell wird validiert durch die Simulation eines Impaktexperiments. Um die Kollisionen zwischen Planetesimalen zu simulieren, wird das Modell erweitert. Die Vorgänger der Planetesimale, die Protoaplanetesimale, waren voraussichtlich keine felsigen Gesteinsbrocken, sondern vielmehr hoch poröse Staubagglomerate. Durch die Parametrisierung der elastischen Eigenschaften der Materialen durch die Porosität wird die Kollision zwischen Staubagglomeraten simuliert. Die Ergebnisse deuten darauf hin, daß das Wachstum von Meter großen Objekten zu Planetesimalen im solaren Nebel möglich war, wenn diese Meter großen Object porös waren. Ein weiteres Problem bei der Entstehung von Gasgiganten wird untersucht. Die gravitative Wechselwirkung einer viskosen Akkretionsscheibe mit einem eingebetteten Planeten führt zur Migration des Planeten in der Scheibe. Die Migration eines oder zweier Planeten wird eingehend in numerischen Simulationen studiert. Die Wechselwirkung der Planeten innerhalb der Scheibe kann zu resonanten Planetensystemen führen, wie sie auch beobachtet werden. Für diese Modellierungen wurde ein neuer Ansatz einer künstlichen Volumenviskosität, die das gegenseitige Durchdringen der SPH Teilchen verhindert, und es damit ermöglicht, die viskosen Prozesse in der Akkretionsscheibe zu korrekt simulieren. Ergebnisse des EU planet network code comparison project, in dem ein definiertes astrophysikalisches Problem von mehreren numerischen Verfahren gelöst werden soll, werden vorgestellt, und meine SPH Ergebnisse mit denen aus Finite Differenzen Codes verglichen.
منابع مشابه
Influence of Water Cooling on Orthogonal Cutting Process of Ti-6Al-4V Using Smooth-Particle Hydrodynamics Method
Temperature control during the cutting process with different parameters such as cutting velocity and applying water cooling is essential to decrease the cutting force, increase the life of the cutting tool and decrease the machined surface temperature of work-piece. In this research, the temperature of machined surface and the chip-tool interface in orthogonal cutting process of Ti-6Al-4V were...
متن کاملNumerical Simulation of Seepage Flow through Dam Foundation Using Smooth Particle Hydrodynamics Method (RESEARCH NOTE)
In this paper, a mesh-free approach called smooth particle hydrodynamics (SPH) is proposed to analyze the seepage problem in porous media. In this method, computational domain is discredited by some nodes, and there is no need for background mesh; therefore, it is a truly meshless method. The method was applied to analyze seepage flow through a concrete dam foundation. Using the SPH method, the...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملMixed Strong Form Representation Particle Method for Solids and Structures
In this paper, a generalized particle system (GPS) method, a general method to describe multiple strong form representation based particle methods is described. Gradient, divergence, and Laplacian operators used in various strong form based particle method such as moving particle semi-implicit (MPS) method, smooth particle hydrodynamics (SPH), and peridynamics, can be described by the GPS metho...
متن کامل